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ABSTRACT
Thermal drones are increasingly used for conservation tasks such as biodiversity monitoring and wildfire 
management, but their utility in combating illegal activities in tropical rainforests remains underexplored. This study 
assesses the potential of thermal drones to detect campfires associated with illegal poaching and gold mining in Costa 
Rica’s Osa Peninsula. We simulated illegal campfires placed under the forest canopy, and conducted 29 experimental 
thermal drone flights across five survey rounds along a 1-km riverbank. Hypothesised factors influencing detection 
success, including fire stage, time of day, and canopy cover, were analysed. The drone detected 21 of 23 campfires 
(91 per cent), with 73 per cent detected on the first flight. Increased canopy cover and older fires reduced detection 
success, but time of day had no significant impact. Detecting humans was more challenging than campfire detection. 
The findings suggest thermal drones can aid enforcement in tropical rainforests but should be used in repeated 
surveys to improve detection rates, especially in locations with dense canopies. Thermal drones could enhance efforts 
to monitor illegal hunting, mining and trespassing in remote protected areas, helping conservation teams save time 
and resources in challenging environments.
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INTRODUCTION
Drones provide a relatively low-cost tool, to rapidly and 
systematically observe both natural phenomena and 
anthropogenic disturbances at high resolution across 
broad temporal scales in challenging environments 
(Rodríguez et al., 2012). In recent years, thermal infrared 
sensors have been incorporated into drone camera 
systems enhancing their surveying capabilities. The 
technology relies on the contrasting temperatures of focal 
individuals or objects from their ambient environment, 
providing new opportunities for surveying wildlife and 
ecosystems, and surveillance in terms of both search and 
rescue and control and protection (Beaver et al., 2020, 
Mulero-Pázmány et al., 2014, Witczuk et al., 2018). 

Thermal drone research has become increasingly popular 
in conservation and monitoring due to its ability to 
detect wildlife and habitat changes effectively. The list of 
species monitored using thermal drones increases each 
year including mammals (Gooday et al., 2018, Kays et 
al., 2019, Larsen et al., 2023, Whitworth et al., 2022), 
birds (Avila-Sanchez et al., 2024, Santangeli et al., 
2020), and reptiles (Sellés-Ríos et al., 2022, Viljoen et 
al., 2023). Thermal drones have also been used to study 
land-use change across time in a variety of ecosystems 
such as grasslands, wetlands, savannas, riparian, coastal 
and marine habitats (Adedeji et al., 2015, Agarwal et al., 
2019, Mancini et al., 2016, Natesan et al., 2018). Finally, 
terrestrial and maritime surveillance has improved 
by using this technology, focusing on forest fire alerts, 
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rescue searches, fighting poachers and illegal gold 
miners, and detecting illegal logging in protected areas 
(Jeon et al., 2019, Jiménez-López & Mulero-Pázmány, 
2019, Klimkowska & Lee, 2017, Mulero-Pázmány et 
al., 2014, Tang & Shao, 2015). Despite these advances, 
most studies have either been restricted to open areas 
or focused on the upper forest canopy itself, neglecting 
the dense understory where illegal activities occur and 
are harder to detect (Guimarães et al., 2020). As most 
of the world’s biodiversity exists within tropical forest 
ecosystems (Pironon et al., 2020, Raven et al., 2020) 
and wildlife poaching remains a major challenge both 
inside and outside of tropical protected areas (Baillie 
et al., 2004, Lavadinović et al., 2021), having effective 
tools to monitor anthropogenic disturbances and illegal 
activities in these ecosystems is crucial. Therefore, there 
is a need to address the information scarcity on the 
utility of thermal drones to perform surveillance of illegal 
activities in closed-canopy tropical forest habitats.

A key challenge for wildlife professionals and Indigenous 
communities managing tropical forests is the difficulty 
in rapidly identifying and responding to illegal and 
destructive activities (Murrins-Misiukas et al., 2021). 
Protected areas are often large and management budgets 
small, leading to small ranger teams being tasked with 
patrolling vast areas that are difficult to access and patrol 
safely. As such, drones mounted with thermal cameras 
could prove a useful addition to the conservation 
toolkit, reducing arduous on-foot patrols and decreasing 
response times to environmentally damaging illegal 
activities. However, the efficiency of thermal drones in 
detecting illegal activities in tropical forests remains 
unknown. 

Here we address the lack of information about the utility 
of thermal drones to detect illegal activities by assessing 
their ability to detect understory campfires and people in 
a closed-canopy tropical forest context. Specifically, we 
established campfires mimicking those used by poachers 
and gold miners in protected areas of the region along a 
1-km stream bank, then flew test flights using a thermal 
drone to determine the detection probability for the fires 
and people. We first assess if campfires are detectable 
in forested environments, then determine the effects 
of three key variables hypothesised to influence fire 
detection probability: variation in fire stage (flaming 
fires should be easier to detect than embers), time of 
day (fires should be more detectable at night than in the 
day due to higher temperature differential), and canopy 
cover (increased canopy cover should decrease campfire 
detection probability). Finally, we assess the ability of 
the thermal drone to detect the people on the ground 
conducting illegal activities.

METHODS
Study site
The Osa Peninsula in the south Pacific of Costa Rica is 
home to one of the largest remaining tracts of Pacific 
lowland wet forest in Mesoamerica (Holdridge, 1967) 
and encompasses a system of protected areas (~80 per cent 
of the terrestrial surface has some degree of protection) 
containing both primary (of which less than half of the 
original area remains) (Weissenhofer et al., 2001) and 
secondary forest. Outside the protected areas is a landscape 
matrix of cattle farms, oil palm plantations, agriculture, 
and timber plantations. Before these protected areas were 
established, the Osa Peninsula experienced high levels of 
environmentally damaging activities, including logging, 
wildlife poaching and gold mining (Algeet-Abarquero et 
al., 2015, Borge & Herrera, 2006, Carrillo et al., 2000). 
Whilst illegal activities have decreased in the region since 
the economy has shifted towards ecotourism, both 
poaching and gold mining persist in some areas of the 
region (López-Gutiérrez, 2020, Wong, 2014). 

The study site is on the Osa Conservation Campus 
(formerly known as Piro Biological Station, 8.40388 N, 
83.33661 W, see Figure 1), embedded within the Golfo Dulce 
Forest Reserve that connects Osa’s two National Parks 
– Corcovado and Piedras Blancas. Temperatures at the 
field site range between 23.4 °C and 28.8 °C (Whitworth 
et al., 2018). Rainfall averages 3,584 mm yr− 1 and is 
seasonal, with a rainy season from June to November and 
a dry season from December to May (Taylor et al., 2015). 

Based on local knowledge, illegal campfire activity is 
most likely to occur near small streams that lead into the 
main watersheds where there would be gold mining 
activities, and the campfires are known to be lit from 
dusk to dawn (17:00–7:00). To test if campfires could be 
detected by a drone mounted with a thermal camera in a 
tropical rainforest system, we ran a series of 
experimental flights. Our study flights were conducted in 
areas of > 40-year-old naturally regenerating secondary-
growth forest within the Piro watershed.

Fire establishment
On five occasions (rounds) between May and August 
2021, two members of the team were instructed to light 
up to three fires each at random locations at varying 
distances along the riverbank and stay in the region to 
maintain them (Figure 1A) imitating those used by gold 
miners and poachers in the tropical rainforest. Each one 
was built under black plastic tarpaulin to protect it from 
the rain (Figure 1B). During each round between one and 
six fires were lit, resulting in a total across all rounds of 
23 fires. For each round, the fires were lit in two sets – 
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morning and night – to reflect the times when fires were 
most likely to be lit in this region. Morning fires were lit 
at 04:30, night fires at 17:30. The fires were maintained 
in a ‘flaming’ state for the first two flights of each set (see 
Drone flights section below) and then they were left to 
turn into embers by the third flight (09:00 and 22:00), 
to mimic real campfire management and to test the effect 
of the campfire stage on its detectability. Location and 
quantity of fires were unknown to the drone pilot. 

Drone flights
Flights were performed using the Autel Robotics drone, 
model EVO II DUAL CAMERA (registration number 
RPAS-1354-CR) flown by drone pilot Johan Ortiz (licence 
number 60-4140911). The model contains an Uncooled 
VOx Microbolometer sensor (field of view = H33° V26°, 
lens focal length 13 mm), the pixel size was 12 µm and 
wavelength range 8–14 µm. Five rounds of experimental 
flights were executed. During each round, six flights were 
completed. One flight was excluded due to an SD card 
error, resulting in a final sample size of 29 flights. Each 
round was split into two ‘sets’ of three flights, one set was 
completed at night-time (18:00, 20:00 and 22:00) and 

another set of three flights was completed in the morning 
(05:00, 07:00, 09:00). 

We programmed the drone to automatically fly a planned 
route of 1 km (going up one side of the river for 500 m 
and then returning on the other side, the flight route 
taken was 15 m from the riverbank on each side – Figure 
1A) at a speed of 10.8 km/h as this flight speed has been 
proven to increase detection rates of drone-based wildlife 
counts in this region (Whitworth et al., 2022) and an 
overall flight time of 20 minutes. The drone elevation 
was configured at a minimum height of 90 m and a 
maximum of 120 m from the ground, considering the 
changes in topography and maximum height of trees 
across the flight route. During experimental flights the 
‘Hottest’ thermal camera setting was determined the 
most effective to spot campfires and people with orange 
marks highlighting the warmest points (Figure 1C–E), 
therefore this mode at an angle of 90 degrees was used. 
Before the flight round, the field of view of the thermal 
camera was tested at different flight heights to ensure 
optimal setting selection for campfire detection and the 
safe flight of the drone according to variations in 
topography and different tree heights.

Figure 1. Survey area, location within Costa Rica, and examples of campfire simulation and its detection using a 
thermal-mounted camera. A = Campfires lit along the river and drone flight automated route, B = Campfire being 
lit prior to the drone flights imitating a fire of a gold miner or poacher in a tropical rainforest, C = Flaming campfire 
detected from the canopy using a thermal camera mounted on a drone (screenshot of a video recorded by the 
drone), D = Campfire embers detected from the canopy using a thermal camera mounted on a drone (screenshot 
of a video recorded by the drone), E = Person detected from the canopy using a thermal camera mounted on a 
drone (zoomed in screenshot of a video recorded by the drone).
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Figure 2. Predicted detection probabilities for fires in different contexts (canopy cover, fire stage, and time of day). 
A = detection probabilities (black line) and 95% confidence interval (grey area) across a natural range of canopy 
cover (for ‘flaming’ fires in the ‘morning’) and points showing the raw data for individual fire detections,  
B = detection probabilities (points) and 95% confidence interval (lines) at different fire stages (for 55% canopy 
cover in the ‘morning’), C = detection probabilities (points) and 95% confidence interval (lines) at different times of 
day (for 55% canopy cover and ‘flaming’ fire).

Predictors of fire detection
We tested three covariates to reflect predictors of 
fire detection probability: fire stage, time of day, and 
canopy cover. To test the effect of the campfire stage 
on its detectability by a thermal drone, the fires were 
in a ‘flaming’ stage for the flights at 5:00, 7:00, 18:00 
and 20:00 and then were left to turn into embers 
on the flights at 09:00 and 22:00, to mimic the real 
maintenance of gold miners’ campfires in the region. 
To understand the effect of canopy cover on campfire 
detection, we used the natural heterogeneity in canopy 
cover at the fire locations. We quantified canopy cover by 
taking a photograph using the Canopeo 1.1.7 mobile app 
(http://www.canopeoapp.com/) parallel with the canopy 
at chest level, directly above the fire location. Mean 
canopy cover across all sites was 55 per cent (min = 18 
per cent, max = 85 per cent). Surveys occurring between 
5:00 and 9:00 were assigned as ‘morning’ and surveys 
occurring 18:00–22:00 as ‘night’. 

Data analysis
A single trained observer reviewed the video from the 
resultant drone flights, marking locations where they 
thought a campfire was present. These identifications 
were then compared with the known fire locations post-
hoc. Events, where fires were successfully detected, were 
designated as 1, and events where the fire was missed 
were recorded as 0. To identify the factors (fire stage, 
time of day and canopy cover) that affected campfire 

detectability, we used a generalised linear model using 
the binomial family with a log link in the R statistical 
environment (R.4.4.0) (R Core Team, 2013). We applied 
a global model approach, including all the candidate 
covariates in a single model then using Wald tests 
to determine if there was statistical support for each 
given covariate. We used visualisations of effect size 
to determine if covariates had biologically meaningful 
effects. Model fit was assessed using standard residual 
plotting techniques. 

RESULTS
Campfire detection using drones
Of the 23 campfires established across all five rounds, 
21 were detected at least once on a given survey flight 
(overall detection probability of 91 per cent). Breaking 
this down into individual flights (six per round), 17 (73 
per cent) had been detected after the first flight, 18 (78 
per cent) after the second, 20 after the third and fourth 
(87 per cent), and 21 (91 per cent) after the fifth and sixth 
flights. No additional fires were detected on the sixth 
flight. There were no instances of ‘fire’ being designated 
by the drone observer when there was no fire present. 

Predictors of campfire detection efficiency 
We assessed three predictors of campfire detection 
probability: fire stage (flaming or embers), time of day 
(morning or night) and canopy cover. Increasing canopy 
cover had a strong negative effect on fire detection 
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probability (Figure 2A, regression coefficient = -0.06, p < 
0.001), with detection probabilities declining steeply 
above 40 per cent canopy cover. Flaming fires were 29 
per cent easier to detect than just the embers (Figure 2B, 
‘embers’ regression coefficient = -1.29, p = 0.003) and 
there was no statistical support for a difference in detection 
probability between morning and night-time (Figure 2C, 
‘night-time’ regression coefficient = 0.17, p = 0.691). 

Human detection
During each flight, we also recorded if the people 
tending the fires were successfully detected. Human heat 
signatures were successfully detected on 13 of the 29 
occasions (44 per cent).

Discussion
This study demonstrates that campfires can be detected 
using thermal drones in tropical rainforest ecosystems 
with reasonably high efficiency. Campfires were detected 
after a single pass on three-quarters of occasions, with 
the detection rate increasing to nine out of ten after 
multiple flight passes had occurred. However, detectability 
was reduced for late-stage campfires and fires located 
under denser canopy cover. We were also able to detect 
humans on over a third of patrol flights. Below, we 
discuss the implications of these findings for control and 
protection activities in tropical forests contexts. 

Thermal drones are an effective tool for 
monitoring campfires
Thermal drones have the potential to enable rangers 
to safely cover large areas and then organise targeted 
patrols to capture intruders ‘in the act’. Drones can 
determine the exact location of fires, but also the 
presence of the perpetrators involved, helping rangers 
to organise a response consistent with the size and scale 
of the illegal activity occurring. Whilst thermal drone 
use has become common in fire management strategies, 
especially in detecting forest fires (Chen et al., 2018, 
Tang & Shao, 2015), this is the first demonstration of 
their use to detect small sub-canopy fires in a tropical 
forest context. Although the detection probability of 
older fires was reduced by 37 per cent relative to flaming 
fires, they were still detectable, consistent with previous 
work showing thermal cameras are an effective tool to 
detect subterranean peat fires (Burke et al., 2019) – as 
the ground temperature directly above the fire remained 
hotter than the ambient ground temperature (Usup et 
al., 2004). This broadens the window of detection for 
rangers looking for evidence of illegal activities. 

Previous work suggests that objects are usually easier 
to detect at night-time (Hwang et al., 2015) as there is 
a higher contrast between the target object in cooler 

ambient environments (Spaan et al., 2019). However, 
we found no strong effect of time of day on fire detection 
probability, flaming fires were detected just as well in the 
morning (79 per cent) as they were at night (81 per cent). 
This difference is likely driven by most of the previous 
work focusing on detection of wildlife, which typically 
have thermal signatures slightly above that of the 
background, whereas hot campfires have a more marked 
thermal difference. This suggests that campfire surveys 
can be effective in the daytime too, supporting findings 
by Hambrecht et al. (2019), who did not find time of day 
as a significant factor in object detectability. Previous 
research has also suggested that daytime surveys may 
have a higher number of false positive detections (Doull 
et al., 2021). The lack of false positives here was likely 
due to the high relative difference in temperature 
between the fires and the ambient environment making 
them easy to discriminate from hot rocks or branches – 
the most common false positive objects in wildlife studies 
(Burke et al., 2018).

Drone surveys could reduce illegal activities as intruders 
are discouraged by the risk of being detected (Reischig 
et al., 2018). However, consistent with previous 
studies (Doull et al., 2021, Hambrecht et al., 2019), the 
probability of detection was greatly reduced in areas of 
high canopy cover (98 per cent detection probability at 15 
per cent canopy cover, versus 37 per cent at 85 per cent 
canopy cover). Concerningly, this suggests that illegal 
activities may be harder to detect in intact forests, the 
locations where protection is most needed. Furthermore, 
illegal intruders could better hide their campfires from 
drones mounted with thermal technology should they 
learn the shortfalls of the tools used to identify them. If 
this approach is adopted by protected area managers and 
rangers, we urge the use of continual surveys to assess if 
trespassers learn to evade detection.

Improving campfire detection methods
Regardless, this tool shows potential for applied use by 
protected area managers. Here we used a quadcopter 
drone with relatively limited battery life, flight time and 
survey range. Despite its limitations, it rapidly covered 
a 1-km patrol area in just 20 minutes, successfully 
detecting campfires and human heat signatures. We used 
a human-observer to determine signals in the thermal 
imagery, and while this was still effective, it was time 
consuming. Applying machine learning technology to 
develop automated detection algorithms may enhance 
the efficiency of the work, and perhaps even detect people 
and fires with higher probability (Davis & Sharma, 2007, 
Hwang et al., 2015, Yeom, 2021). Use of automated 
systems may also facilitate flying at faster flight speeds 
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and cover greater distances in patrols without the need 
to rely on human observers scanning the imagery. 
This would represent a valuable step forward in the 
development and use of this technology for protected 
area management scenarios.

The capability of these surveys would be further 
improved using drones with greater flight capacities. 
There are several fixed wing models with greater flight 
times and ranges (over 2 hours and 30 km, see Autel’s 
Dragonfish models for example). While transmission to a 
handheld receiver would not be possible over that range, 
AI processing tools could be applied to footage once a 
patrol flight returns, allowing rapid identification and 
locations of illegal activities. In rainforest habitats this 
would be hugely beneficial in patrolling large areas where 
on-foot patrols might otherwise take many hours, or even 
days to complete. This technology could be critical for 
many national parks in tropical forests which are often 
restricted by tight funding budgets and limited personnel 
to protect large areas (Bruner et al., 2001, Watson 
et al., 2014). Crucial next steps for this work are to 
expand the assessment of campfire detection to include 
locations with different habitat types and topographies, 
fire sizes, environmental conditions (e.g. weather and 
seasonality), and assess the influence of increased drone 
path complexity. Extending these elements is essential in 
determining the transferability of our findings to other 
contexts and ecosystems. 

Ultimately a major hurdle to widespread implementation 
of thermal drone technology remains the upfront costs 
of purchasing and maintaining the devices and getting 
sufficient training to utilise the tool safely and effectively. 
Such barriers could be overcome with investment in 
staff development and training, and through showcasing 
managers and decision-makers how drones might 
enhance the efficacy of ranger patrols. These efforts could 
be key to many countries in upholding their national 
and international commitments for protecting and 
safeguarding biodiversity. Crucially, thermal drones 
could help to detect and deter illegal activities, whilst 
simultaneously monitoring biodiversity (Gonzalez et 
al., 2016, Ivanova & Prosekov, 2024, McCarthy et al., 
2021, Scholten et al., 2019, Witczuk et al., 2018). In fact, 
drone technology for biodiversity is fast becoming one of 
the most used tools in monitoring wildlife according to 
Ivanova et al. (2022).

In summary, this work marks a useful first step in the 
application of a burgeoning technology to assist with 
the control and protection efforts in tropical forest 
ecosystems and highlights the need for further testing 
and tool development. Similar surveys in other rainforest 

regions with different habitat conditions, or intruder 
behaviours, would be helpful to determine how broadly 
applicable and useful the technology could be. As a next 
step, this technology should be tested with real patrols in 
a protected area, to prove the real application alongside 
targeted follow-up patrols and arrests of intruders. 
Conservation funders, engineering departments, and 
drone technology companies could help to support 
and subsidise costs of the required trials and software 
development so that confidence and reliability can be 
established prior to broad-scale adoption for protected 
area management. This process needs to happen 
quickly given the rampant illegal resource extraction 
activities occurring throughout the world’s tropical forest 
ecosystems.
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RESUMEN
Los drones térmicos se utilizan cada vez más para tareas de conservación, como la vigilancia de la biodiversidad y la 
gestión de incendios forestales, pero su utilidad en la lucha contra las actividades ilegales en las selvas tropicales sigue 
estando poco explorada. Este estudio evalúa el potencial de los drones térmicos para detectar hogueras asociadas a 
la caza furtiva ilegal y la minería de oro en la Península de Osa de Costa Rica. Simulamos hogueras ilegales situadas 
bajo el dosel del bosque y realizamos 29 vuelos experimentales con drones térmicos en cinco rondas de inspección a 
lo largo de una ribera de 1 km. Se analizaron las hipótesis sobre los factores que influyen en el éxito de la detección, 
como la fase del incendio, la hora del día y la cubierta de copas. El dron detectó 21 de 23 hogueras (91%), el 73% en 
el primer vuelo. El aumento de la cubierta de copas y los incendios más antiguos redujeron el éxito de la detección, 
pero la hora del día no tuvo un impacto significativo. La detección de personas fue más difícil que la de hogueras. 
Los resultados sugieren que los drones térmicos pueden ayudar a hacer cumplir la ley en las selvas tropicales, pero 
que deben utilizarse en estudios repetidos para mejorar los índices de detección, especialmente en lugares con copas 
densas. Los drones térmicos podrían mejorar la vigilancia de la caza, la minería y el allanamiento ilegales en zonas 
protegidas remotas, ayudando a los equipos de conservación a ahorrar tiempo y recursos en entornos difíciles.

RÉSUMÉ
Les drones thermiques sont de plus en plus utilisés pour des tâches de conservation telles que la surveillance de la 
biodiversité et la gestion des incendies de forêt, mais leur utilité dans la lutte contre les activités illégales dans les 
forêts tropicales humides reste sous-explorée. Cette étude évalue le potentiel des drones thermiques pour détecter 
les feux de camp associés au braconnage et à l'exploitation aurifère dans la péninsule d'Osa au Costa Rica. Nous 
avons simulé des feux de camp illégaux placés sous la canopée de la forêt et effectué 29 vols expérimentaux de 
drones thermiques au cours de cinq tournées d'étude le long d'une rive d'un kilomètre. Les facteurs hypothétiques 
influençant le succès de la détection, notamment le stade de l'incendie, l'heure de la journée et la couverture de 
la canopée, ont été analysés. Le drone a détecté 21 des 23 feux de camp (91 %), dont 73 % lors du premier vol. 
L'augmentation de la couverture végétale et les feux plus anciens ont réduit le succès de la détection, mais l'heure de 
la journée n'a pas eu d'impact significatif. La détection des humains a été plus difficile que celle des feux de camp. Les 
résultats suggèrent que les drones thermiques peuvent contribuer à l'application de la loi dans les forêts tropicales 
humides, mais qu'ils devraient être utilisés dans le cadre d'enquêtes répétées afin d'améliorer les taux de détection, 
en particulier dans les endroits où la canopée est dense. Les drones thermiques pourraient renforcer les efforts de 
surveillance de la chasse illégale, de l'exploitation minière et des intrusions dans les zones protégées éloignées, en 
aidant les équipes de conservation à gagner du temps et à économiser des ressources dans des environnements 
difficiles.


